caffe

Training a Caffe model with pycaffe

Training a network on the Iris dataset

Given below is a simple example to train a Caffe model on the Iris data set in Python, using PyCaffe. It also gives the predicted outputs given some user-defined inputs.

iris_tuto.py

import subprocess
import platform
import copy

from sklearn.datasets import load_iris
import sklearn.metrics 
import numpy as np
from sklearn.cross_validation import StratifiedShuffleSplit
import matplotlib.pyplot as plt
import h5py
import caffe
import caffe.draw


def load_data():
    '''
    Load Iris Data set
    '''
    data = load_iris()
    print(data.data)
    print(data.target)
    targets = np.zeros((len(data.target), 3))
    for count, target in enumerate(data.target):
        targets[count][target]= 1    
    print(targets)

    new_data = {}
    #new_data['input'] = data.data
    new_data['input'] = np.reshape(data.data, (150,1,1,4))
    new_data['output'] = targets
    #print(new_data['input'].shape)
    #new_data['input'] = np.random.random((150, 1, 1, 4))
    #print(new_data['input'].shape)   
    #new_data['output'] = np.random.random_integers(0, 1, size=(150,3))    
    #print(new_data['input'])

    return new_data

def save_data_as_hdf5(hdf5_data_filename, data):
    '''
    HDF5 is one of the data formats Caffe accepts
    '''
    with h5py.File(hdf5_data_filename, 'w') as f:
        f['data'] = data['input'].astype(np.float32)
        f['label'] = data['output'].astype(np.float32)


def train(solver_prototxt_filename):
    '''
    Train the ANN
    '''
    caffe.set_mode_cpu()
    solver = caffe.get_solver(solver_prototxt_filename)
    solver.solve()


def print_network_parameters(net):
    '''
    Print the parameters of the network
    '''
    print(net)
    print('net.inputs: {0}'.format(net.inputs))
    print('net.outputs: {0}'.format(net.outputs))
    print('net.blobs: {0}'.format(net.blobs))
    print('net.params: {0}'.format(net.params))    

def get_predicted_output(deploy_prototxt_filename, caffemodel_filename, input, net = None):
    '''
    Get the predicted output, i.e. perform a forward pass
    '''
    if net is None:
        net = caffe.Net(deploy_prototxt_filename,caffemodel_filename, caffe.TEST)

    #input = np.array([[ 5.1,  3.5,  1.4,  0.2]])
    #input = np.random.random((1, 1, 1))
    #print(input)
    #print(input.shape)
    out = net.forward(data=input)
    #print('out: {0}'.format(out))
    return out[net.outputs[0]]


import google.protobuf 
def print_network(prototxt_filename, caffemodel_filename):
    '''
    Draw the ANN architecture
    '''
    _net = caffe.proto.caffe_pb2.NetParameter()
    f = open(prototxt_filename)
    google.protobuf.text_format.Merge(f.read(), _net)
    caffe.draw.draw_net_to_file(_net, prototxt_filename + '.png' )
    print('Draw ANN done!')


def print_network_weights(prototxt_filename, caffemodel_filename):
    '''
    For each ANN layer, print weight heatmap and weight histogram 
    '''
    net = caffe.Net(prototxt_filename,caffemodel_filename, caffe.TEST)
    for layer_name in net.params: 
        # weights heatmap 
        arr = net.params[layer_name][0].data
        plt.clf()
        fig = plt.figure(figsize=(10,10))
        ax = fig.add_subplot(111)
        cax = ax.matshow(arr, interpolation='none')
        fig.colorbar(cax, orientation="horizontal")
        plt.savefig('{0}_weights_{1}.png'.format(caffemodel_filename, layer_name), dpi=100, format='png', bbox_inches='tight') # use format='svg' or 'pdf' for vectorial pictures
        plt.close()

        # weights histogram  
        plt.clf()
        plt.hist(arr.tolist(), bins=20)
        plt.savefig('{0}_weights_hist_{1}.png'.format(caffemodel_filename, layer_name), dpi=100, format='png', bbox_inches='tight') # use format='svg' or 'pdf' for vectorial pictures
        plt.close()


def get_predicted_outputs(deploy_prototxt_filename, caffemodel_filename, inputs):
    '''
    Get several predicted outputs
    '''
    outputs = []
    net = caffe.Net(deploy_prototxt_filename,caffemodel_filename, caffe.TEST)
    for input in inputs:
        #print(input)
        outputs.append(copy.deepcopy(get_predicted_output(deploy_prototxt_filename, caffemodel_filename, input, net)))
    return outputs    


def get_accuracy(true_outputs, predicted_outputs):
    '''

    '''
    number_of_samples = true_outputs.shape[0]
    number_of_outputs = true_outputs.shape[1]
    threshold = 0.0 # 0 if SigmoidCrossEntropyLoss ; 0.5 if EuclideanLoss
    for output_number in range(number_of_outputs):
        predicted_output_binary = []
        for sample_number in range(number_of_samples):
            #print(predicted_outputs)
            #print(predicted_outputs[sample_number][output_number])            
            if predicted_outputs[sample_number][0][output_number] < threshold:
                predicted_output = 0
            else:
                predicted_output = 1
            predicted_output_binary.append(predicted_output)

        print('accuracy: {0}'.format(sklearn.metrics.accuracy_score(true_outputs[:, output_number], predicted_output_binary)))
        print(sklearn.metrics.confusion_matrix(true_outputs[:, output_number], predicted_output_binary))


def main():
    '''
    This is the main function
    '''

    # Set parameters
    solver_prototxt_filename = 'iris_solver.prototxt'
    train_test_prototxt_filename = 'iris_train_test.prototxt'
    deploy_prototxt_filename  = 'iris_deploy.prototxt'
    deploy_prototxt_filename  = 'iris_deploy.prototxt'
    deploy_prototxt_batch2_filename  = 'iris_deploy_batchsize2.prototxt'
    hdf5_train_data_filename = 'iris_train_data.hdf5' 
    hdf5_test_data_filename = 'iris_test_data.hdf5' 
    caffemodel_filename = 'iris__iter_5000.caffemodel' # generated by train()

    # Prepare data
    data = load_data()
    print(data)
    train_data = data
    test_data = data
    save_data_as_hdf5(hdf5_train_data_filename, data)
    save_data_as_hdf5(hdf5_test_data_filename, data)

    # Train network
    train(solver_prototxt_filename)

    # Print network
    print_network(deploy_prototxt_filename, caffemodel_filename)
    print_network(train_test_prototxt_filename, caffemodel_filename)
    print_network_weights(train_test_prototxt_filename, caffemodel_filename)

    # Compute performance metrics
    #inputs = input = np.array([[[[ 5.1,  3.5,  1.4,  0.2]]],[[[ 5.9,  3. ,  5.1,  1.8]]]])
    inputs = data['input']
    outputs = get_predicted_outputs(deploy_prototxt_filename, caffemodel_filename, inputs)
    get_accuracy(data['output'], outputs)


if __name__ == "__main__":
    main()

It requires the two following iris_train_test.prototxt and iris_deploy.prototxt to be in the same folder.

iris_train_test.prototxt:

name: "IrisNet"
layer {
  name: "iris"
  type: "HDF5Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  hdf5_data_param {
    source: "iris_train_data.txt"
    batch_size: 1

  }
}

layer {
  name: "iris"
  type: "HDF5Data"
  top: "data"
  top: "label"
  include {
    phase: TEST
  }
  hdf5_data_param {
    source: "iris_test_data.txt"
    batch_size: 1

  }
}




layer {
  name: "ip1"
  type: "InnerProduct"
  bottom: "data"
  top: "ip1"
  param {
    lr_mult: 1  # the learning rate multiplier for weights
  }
  param {
    lr_mult: 2  # the learning rate multiplier for biases
  }
  inner_product_param {
    num_output: 50
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "ip1"
  top: "ip1"
}
layer {
  name: "drop1"
  type: "Dropout"
  bottom: "ip1"
  top: "ip1"
  dropout_param {
    dropout_ratio: 0.5
  }
}


layer {
  name: "ip2"
  type: "InnerProduct"
  bottom: "ip1"
  top: "ip2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 50
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "drop2"
  type: "Dropout"
  bottom: "ip2"
  top: "ip2"
  dropout_param {
    dropout_ratio: 0.4
  }
}



layer {
  name: "ip3"
  type: "InnerProduct"
  bottom: "ip2"
  top: "ip3"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}

layer {
  name: "drop3"
  type: "Dropout"
  bottom: "ip3"
  top: "ip3"
  dropout_param {
    dropout_ratio: 0.3
  }
}

layer {
  name: "loss"
  type: "SigmoidCrossEntropyLoss" 
  # type: "EuclideanLoss" 
  # type: "HingeLoss"  
  bottom: "ip3"
  bottom: "label"
  top: "loss"
}

iris_deploy.prototxt:

name: "IrisNet"
input: "data"
input_dim: 1 # batch size
input_dim: 1
input_dim: 1
input_dim: 4


layer {
  name: "ip1"
  type: "InnerProduct"
  bottom: "data"
  top: "ip1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 50
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "ip1"
  top: "ip1"
}
layer {
  name: "drop1"
  type: "Dropout"
  bottom: "ip1"
  top: "ip1"
  dropout_param {
    dropout_ratio: 0.5
  }
}


layer {
  name: "ip2"
  type: "InnerProduct"
  bottom: "ip1"
  top: "ip2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 50
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "drop2"
  type: "Dropout"
  bottom: "ip2"
  top: "ip2"
  dropout_param {
    dropout_ratio: 0.4
  }
}


layer {
  name: "ip3"
  type: "InnerProduct"
  bottom: "ip2"
  top: "ip3"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}

layer {
  name: "drop3"
  type: "Dropout"
  bottom: "ip3"
  top: "ip3"
  dropout_param {
    dropout_ratio: 0.3
  }
}

iris_solver.prototxt:

# The train/test net protocol buffer definition
net: "iris_train_test.prototxt"
# test_iter specifies how many forward passes the test should carry out.
test_iter: 1
# Carry out testing every test_interval training iterations.
test_interval: 1000
# The base learning rate, momentum and the weight decay of the network.
base_lr: 0.0001
momentum: 0.001
weight_decay: 0.0005
# The learning rate policy
lr_policy: "inv"
gamma: 0.0001
power: 0.75
# Display every 100 iterations
display: 1000
# The maximum number of iterations
max_iter: 5000
# snapshot intermediate results
snapshot: 5000
snapshot_prefix: "iris_"
# solver mode: CPU or GPU
solver_mode: CPU # GPU

This modified text is an extract of the original Stack Overflow Documentation created by the contributors and released under CC BY-SA 3.0 This website is not affiliated with Stack Overflow