clojure

Collections and Sequences

Syntax#

  • '()()
  • '(1 2 3 4 5)(1 2 3 4 5)
  • '(1 foo 2 bar 3)(1 'foo 2 'bar 3)
  • (list 1 2 3 4 5)(1 2 3 4 5)
  • (list* [1 2 3 4 5])(1 2 3 4 5)
  • [][]
  • [1 2 3 4 5][1 2 3 4 5]
  • (vector 1 2 3 4 5)[1 2 3 4 5]
  • (vec '(1 2 3 4 5))[1 2 3 4 5]
  • {} => {}
  • {:keyA 1 :keyB 2}{:keyA 1 :keyB 2}
  • {:keyA 1, :keyB 2}{:keyA 1 :keyB 2}
  • (hash-map :keyA 1 :keyB 2){:keyA 1 :keyB 2}
  • (sorted-map 5 "five" 1 "one"){1 "one" 5 "five"} (entries are sorted by key when used as a sequence)
  • #{}#{}
  • #{1 2 3 4 5}#{4 3 2 5 1} (unordered)
  • (hash-set 1 2 3 4 5)#{2 5 4 1 3} (unordered)
  • (sorted-set 2 5 4 3 1)#{1 2 3 4 5}

Collections

All built-in Clojure collections are immutable and heterogeneous, have literal syntax, and support the conj, count, and seq functions.

  • conj returns a new collection that is equivalent to an existing collection with an item “added”, in either “constant” or logarithmic time. What exactly this means depends on the collection.
  • count returns the number of items in a collection, in constant time.
  • seq returns nil for an empty collection, or a sequence of items for a non-empty collection, in constant time.

Lists

A list is denoted by parentheses:

()
;;=> ()

A Clojure list is a singly linked list. conj “conjoins” a new element to the collection in the most efficient location. For lists, this is at the beginning:

(conj () :foo)
;;=> (:foo)

(conj (conj () :bar) :foo)
;;=> (:foo :bar)

Unlike other collections, non-empty lists are evaluated as calls to special forms, macros, or functions when evaluated. Therefore, while (:foo) is the literal representation of the list containing :foo as its only item, evaluating (:foo) in a REPL will cause an IllegalArgumentException to be thrown because a keyword cannot be invoked as a nullary function.

(:foo)
;; java.lang.IllegalArgumentException: Wrong number of args passed to keyword: :foo

To prevent Clojure from evaluating a non-empty list, you can quote it:

'(:foo)
;;=> (:foo)

'(:foo :bar)
;;=> (:foo :bar)

Unfortunately, this causes the elements to not be evaluated:

(+ 1 1)
;;=> 2

'(1 (+ 1 1) 3)
;;=> (1 (+ 1 1) 3)

For this reason, you’ll usually want to use list, a variadic function that evaluates all of its arguments and uses those results to construct a list:

(list)
;;=> ()

(list :foo)
;;=> (:foo)

(list :foo :bar)
;;=> (:foo :bar)

(list 1 (+ 1 1) 3)
;;=> (1 2 3)

count returns the number of items, in constant time:

(count ())
;;=> 0

(count (conj () :foo))
;;=> 1

(count '(:foo :bar))
;;=> 2

You can test whether something is a list using the list? predicate:

(list? ())
;;=> true

(list? '(:foo :bar))
;;=> true

(list? nil)
;;=> false

(list? 42)
;;=> false

(list? :foo)
;;=> false

You can get the first element of a list using peek:

(peek ())
;;=> nil

(peek '(:foo))
;;=> :foo

(peek '(:foo :bar))
;;=> :foo

You can get a new list without the first element using pop:

(pop '(:foo))
;;=> ()

(pop '(:foo :bar))
;;=> (:bar)

Note that if you try to pop an empty list, you’ll get an IllegalStateException:

(pop ())
;; java.lang.IllegalStateException: Can't pop empty list

Finally, all lists are sequences, so you can do everything with a list that you can do with any other sequence. Indeed, with the exception of the empty list, calling seq on a list returns the exact same object:

(seq ())
;;=> nil

(seq '(:foo))
;;=> (:foo)

(seq '(:foo :bar))
;;=> (:foo :bar)

(let [x '(:foo :bar)]
  (identical? x (seq x)))
;;=> true

Sequences

A sequence is very much like a list: it is an immutable object that can give you its first element or the rest of its elements in constant time. You can also construct a new sequence from an existing sequence and an item to stick at the beginning.

You can test whether something is a sequence using the seq? predicate:

(seq? nil)
;;=> false

(seq? 42)
;;=> false

(seq? :foo)
;;=> false

As you already know, lists are sequences:

(seq? ())
;;=> true

(seq? '(:foo :bar))
;;=> true

Anything you get by calling seq or rseq or keys or vals on a non-empty collection is also a sequence:

(seq? (seq ()))
;;=> false

(seq? (seq '(:foo :bar)))
;;=> true

(seq? (seq []))
;;=> false

(seq? (seq [:foo :bar]))
;;=> true

(seq? (rseq []))
;;=> false

(seq? (rseq [:foo :bar]))
;;=> true

(seq? (seq {}))
;;=> false

(seq? (seq {:foo :bar :baz :qux}))
;;=> true

(seq? (keys {}))
;;=> false

(seq? (keys {:foo :bar :baz :qux}))
;;=> true

(seq? (vals {}))
;;=> false

(seq? (vals {:foo :bar :baz :qux}))
;;=> true

(seq? (seq #{}))
;;=> false

(seq? (seq #{:foo :bar}))
;;=> true

Remember that all lists are sequences, but not all sequences are lists. While lists support peek and pop and count in constant time, in general, a sequence does not need to support any of those functions. If you try to call peek or pop on a sequence that doesn’t also support Clojure’s stack interface, you’ll get a ClassCastException:

(peek (seq [:foo :bar]))
;; java.lang.ClassCastException: clojure.lang.PersistentVector$ChunkedSeq cannot be cast to clojure.lang.IPersistentStack

(pop (seq [:foo :bar]))
;; java.lang.ClassCastException: clojure.lang.PersistentVector$ChunkedSeq cannot be cast to clojure.lang.IPersistentStack

(peek (seq #{:foo :bar}))
;; java.lang.ClassCastException: clojure.lang.APersistentMap$KeySeq cannot be cast to clojure.lang.IPersistentStack

(pop (seq #{:foo :bar}))
;; java.lang.ClassCastException: clojure.lang.APersistentMap$KeySeq cannot be cast to clojure.lang.IPersistentStack

(peek (seq {:foo :bar :baz :qux}))
;; java.lang.ClassCastException: clojure.lang.PersistentArrayMap$Seq cannot be cast to clojure.lang.IPersistentStack

(pop (seq {:foo :bar :baz :qux}))
;; java.lang.ClassCastException: clojure.lang.PersistentArrayMap$Seq cannot be cast to clojure.lang.IPersistentStack

If you call count on a sequence that doesn’t implement count in constant time, you won’t get an error; instead, Clojure will traverse the entire sequence until it reaches the end, then return the number of elements that it traversed. This means that, for general sequences, count is linear, not constant, time. You can test whether something supports constant-time count using the counted? predicate:

(counted? '(:foo :bar))
;;=> true

(counted? (seq '(:foo :bar)))
;;=> true

(counted? [:foo :bar])
;;=> true

(counted? (seq [:foo :bar]))
;;=> true

(counted? {:foo :bar :baz :qux})
;;=> true

(counted? (seq {:foo :bar :baz :qux}))
;;=> true

(counted? #{:foo :bar})
;;=> true

(counted? (seq #{:foo :bar}))
;;=> false

As mentioned above, you can use first to get the first element of a sequence. Note that first will call seq on their argument, so it can be used on anything “seqable”, not just actual sequences:

(first nil)
;;=> nil

(first '(:foo))
;;=> :foo

(first '(:foo :bar))
;;=> :foo

(first [:foo])
;;=> :foo

(first [:foo :bar])
;;=> :foo

(first {:foo :bar})
;;=> [:foo :bar]

(first #{:foo})
;;=> :foo

Also as mentioned above, you can use rest to get a sequence containing all but the first element of an existing sequence. Like first, it calls seq on its argument. However, it does not call seq on its result! This means that, if you call rest on a sequence that contains fewer than two items, you’ll get back () instead of nil:

(rest nil)
;;=> ()

(rest '(:foo))
;;=> ()

(rest '(:foo :bar))
;;=> (:bar)

(rest [:foo])
;;=> ()

(rest [:foo :bar])
;;=> (:bar)

(rest {:foo :bar})
;;=> ()

(rest #{:foo})
;;=> ()

If you want to get back nil when there aren’t any more elements in a sequence, you can use next instead of rest:

(next nil)
;;=> nil

(next '(:foo))
;;=> nil

(next [:foo])
;;=> nil

You can use the cons function to create a new sequence that will return its first argument for first and its second argument for rest:

(cons :foo nil)
;;=> (:foo)

(cons :foo (cons :bar nil))
;;=> (:foo :bar)

Clojure provides a large sequence library with many functions for dealing with sequences. The important thing about this library is that it works with anything “seqable”, not just lists. That’s why the concept of a sequence is so useful; it means that a single function, like reduce, works perfectly on any collection:

(reduce + '(1 2 3))
;;=> 6

(reduce + [1 2 3])
;;=> 6

(reduce + #{1 2 3})
;;=> 6

The other reason that sequences are useful is that, since they don’t mandate any particular implementation of first and rest, they allow for lazy sequences whose elements are only realized when necessary.

Given an expression that would create a sequence, you can wrap that expression in the lazy-seq macro to get an object that acts like a sequence, but will only actually evaluate that expression when it is asked to do so by the seq function, at which point it will cache the result of the expression and forward first and rest calls to the cached result.

For finite sequences, a lazy sequence usually acts the same as an equivalent eager sequence:

(seq [:foo :bar])
;;=> (:foo :bar)

(lazy-seq [:foo :bar])
;;=> (:foo :bar)

However, the difference becomes apparent for infinite sequences:

(defn eager-fibonacci [a b]
  (cons a (eager-fibonacci b (+' a b))))

(defn lazy-fibonacci [a b]
  (lazy-seq (cons a (lazy-fibonacci b (+' a b)))))

(take 10 (eager-fibonacci 0 1))
;; java.lang.StackOverflowError:

(take 10 (lazy-fibonacci 0 1))
;;=> (0 1 1 2 3 5 8 13 21 34)

Vectors

A vector is denoted by square brackets:

[]
;;=> []

[:foo]
;;=> [:foo]

[:foo :bar]
;;=> [:foo :bar]

[1 (+ 1 1) 3]
;;=> [1 2 3]

In addition using to the literal syntax, you can also use the vector function to construct a vector:

(vector)
;;=> []

(vector :foo)
;;=> [:foo]

(vector :foo :bar)
;;=> [:foo :bar]

(vector 1 (+ 1 1) 3)
;;=> [1 2 3]

You can test whether something is a vector using the vector? predicate:

(vector? [])
;;=> true

(vector? [:foo :bar])
;;=> true

(vector? nil)
;;=> false

(vector? 42)
;;=> false

(vector? :foo)
;;=> false

conj adds elements to the end of a vector:

(conj [] :foo)
;;=> [:foo]

(conj (conj [] :foo) :bar)
;;=> [:foo :bar]

(conj [] :foo :bar)
;;=> [:foo :bar]

count returns the number of items, in constant time:

(count [])
;;=> 0

(count (conj [] :foo))
;;=> 1

(count [:foo :bar])
;;=> 2

You can get the last element of a vector using peek:

(peek [])
;;=> nil

(peek [:foo])
;;=> :foo

(peek [:foo :bar])
;;=> :bar

You can get a new vector without the last element using pop:

(pop [:foo])
;;=> []

(pop [:foo :bar])
;;=> [:foo]

Note that if you try to pop an empty vector, you’ll get an IllegalStateException:

(pop [])
;; java.lang.IllegalStateException: Can't pop empty vector

Unlike lists, vectors are indexed. You can get an element of a vector by index in “constant” time using get:

(get [:foo :bar] 0)
;;=> :foo

(get [:foo :bar] 1)
;;=> :bar

(get [:foo :bar] -1)
;;=> nil

(get [:foo :bar] 2)
;;=> nil

In addition, vectors themselves are functions that take an index and return the element at that index:

([:foo :bar] 0)
;;=> :foo

([:foo :bar] 1)
;;=> :bar

However, if you call a vector with an invalid index, you’ll get an IndexOutOfBoundsException instead of nil:

([:foo :bar] -1)
;; java.lang.IndexOutOfBoundsException:

([:foo :bar] 2)
;; java.lang.IndexOutOfBoundsException:

You can get a new vector with a different value at a particular index using assoc:

(assoc [:foo :bar] 0 42)
;;=> [42 :bar]

(assoc [:foo :bar] 1 42)
;;=> [:foo 42]

If you pass an index equal to the count of the vector, Clojure will add the element as if you had used conj. However, if you pass an index that is negative or greater than the count, you’ll get an IndexOutOfBoundsException:

(assoc [:foo :bar] 2 42)
;;=> [:foo :bar 42]

(assoc [:foo :bar] -1 42)
;; java.lang.IndexOutOfBoundsException:

(assoc [:foo :bar] 3 42)
;; java.lang.IndexOutOfBoundsException:

You can get a sequence of the items in a vector using seq:

(seq [])
;;=> nil

(seq [:foo])
;;=> (:foo)

(seq [:foo :bar])
;;=> (:foo :bar)

Since vectors are indexed, you can also get a reversed sequence of a vector’s items using rseq:

(rseq [])
;;=> nil

(rseq [:foo])
;;=> (:foo)

(rseq [:foo :bar])
;;=> (:bar :foo)

Note that, although all lists are sequences, and sequences are displayed in the same way as lists, not all sequences are lists!

'(:foo :bar)
;;=> (:foo :bar)

(seq [:foo :bar])
;;=> (:foo :bar)

(list? '(:foo :bar))
;;=> true

(list? (seq [:foo :bar]))
;;=> false

(list? (rseq [:foo :bar]))
;;=> false

Sets

Like maps, sets are associative and unordered. Unlike maps, which contain mappings from keys to values, sets essentially map from keys to themselves.

A set is denoted by curly braces preceded by an octothorpe:

#{}
;;=> #{}

#{:foo}
;;=> #{:foo}

#{:foo :bar}
;;=> #{:bar :foo}

As with maps, the order in which elements appear in a literal set doesn’t matter:

(= #{:foo :bar} #{:bar :foo})
;;=> true

You can test whether something is a set using the set? predicate:

(set? #{})
;;=> true

(set? #{:foo})
;;=> true

(set? #{:foo :bar})
;;=> true

(set? nil)
;;=> false

(set? 42)
;;=> false

(set? :foo)
;;=> false

You can test whether a map contains a given item in “constant” time using the contains? predicate:

(contains? #{} :foo)
;;=> false

(contains? #{:foo} :foo)
;;=> true

(contains? #{:foo} :bar)
;;=> false

(contains? #{} nil)
;;=> false

(contains? #{nil} nil)
;;=> true

In addition, sets themselves are functions that take an element and return that element if it is present in the set, or nil if it isn’t:

(#{} :foo)
;;=> nil

(#{:foo} :foo)
;;=> :foo

(#{:foo} :bar)
;;=> nil

(#{} nil)
;;=> nil

(#{nil} nil)
;;=> nil

You can use conj to get a set that has all the elements of an existing set, plus one additional item:

(conj #{} :foo)
;;=> #{:foo}

(conj (conj #{} :foo) :bar)
;;=> #{:bar :foo}

(conj #{:foo} :foo)
;;=> #{:foo}

You can use disj to get a set that has all the elements of an existing set, minus one item:

(disj #{} :foo)
;;=> #{}

(disj #{:foo} :foo)
;;=> #{}

(disj #{:foo} :bar)
;;=> #{:foo}

(disj #{:foo :bar} :foo)
;;=> #{:bar}

(disj #{:foo :bar} :bar)
;;=> #{:foo}

count returns the number of elements, in constant time:

(count #{})
;;=> 0

(count (conj #{} :foo))
;;=> 1

(count #{:foo :bar})
;;=> 2

You can get a sequence of all elements in a set using seq:

(seq #{})
;;=> nil

(seq #{:foo})
;;=> (:foo)

(seq #{:foo :bar})
;;=> (:bar :foo)

Maps

Unlike the list, which is a sequential data structure, and the vector, which is both sequential and associative, the map is exclusively an associative data structure. A map consists of a set of mappings from keys to values. All keys are unique, so maps support “constant”-time lookup from keys to values.

A map is denoted by curly braces:

{}
;;=> {}

{:foo :bar}
;;=> {:foo :bar}

{:foo :bar :baz :qux}
;;=> {:foo :bar, :baz :qux}

Each pair of two elements is a key-value pair. So, for instance, the first map above has no mappings. The second has one mapping, from the key :foo to the value :bar. The third has two mappings, one from the key :foo to the value :bar, and one from the key :baz to the value :qux. Maps are inherently unordered, so the order in which the mappings appear doesn’t matter:

(= {:foo :bar :baz :qux}
   {:baz :qux :foo :bar})
;;=> true

You can test whether something is a map using the map? predicate:

(map? {})
;;=> true

(map? {:foo :bar})
;;=> true

(map? {:foo :bar :baz :qux})
;;=> true

(map? nil)
;;=> false

(map? 42)
;;=> false

(map? :foo)
;;=> false

You can test whether a map contains a given key in “constant” time using the contains? predicate:

(contains? {:foo :bar :baz :qux} 42)
;;=> false

(contains? {:foo :bar :baz :qux} :foo)
;;=> true

(contains? {:foo :bar :baz :qux} :bar)
;;=> false

(contains? {:foo :bar :baz :qux} :baz)
;;=> true

(contains? {:foo :bar :baz :qux} :qux)
;;=> false

(contains? {:foo nil} :foo)
;;=> true

(contains? {:foo nil} :bar)
;;=> false

You can get the value associated with a key using get:

(get {:foo :bar :baz :qux} 42)
;;=> nil

(get {:foo :bar :baz :qux} :foo)
;;=> :bar

(get {:foo :bar :baz :qux} :bar)
;;=> nil

(get {:foo :bar :baz :qux} :baz)
;;=> :qux

(get {:foo :bar :baz :qux} :qux)
;;=> nil

(get {:foo nil} :foo)
;;=> nil

(get {:foo nil} :bar)
;;=> nil

In addition, maps themselves are functions that take a key and return the value associated with that key:

({:foo :bar :baz :qux} 42)
;;=> nil

({:foo :bar :baz :qux} :foo)
;;=> :bar

({:foo :bar :baz :qux} :bar)
;;=> nil

({:foo :bar :baz :qux} :baz)
;;=> :qux

({:foo :bar :baz :qux} :qux)
;;=> nil

({:foo nil} :foo)
;;=> nil

({:foo nil} :bar)
;;=> nil

You can get an entire map entry (key and value together) as a two-element vector using find:

(find {:foo :bar :baz :qux} 42)
;;=> nil

(find {:foo :bar :baz :qux} :foo)
;;=> [:foo :bar]

(find {:foo :bar :baz :qux} :bar)
;;=> nil

(find {:foo :bar :baz :qux} :baz)
;;=> [:baz :qux]

(find {:foo :bar :baz :qux} :qux)
;;=> nil

(find {:foo nil} :foo)
;;=> [:foo nil]

(find {:foo nil} :bar)
;;=> nil

You can extract the key or value from a map entry using key or val, respectively:

(key (find {:foo :bar} :foo))
;;=> :foo

(val (find {:foo :bar} :foo))
;;=> :bar

Note that, although all Clojure map entries are vectors, not all vectors are map entries. If you try to call key or val on anything that’s not a map entry, you’ll get a ClassCastException:

(key [:foo :bar])
;; java.lang.ClassCastException:

(val [:foo :bar])
;; java.lang.ClassCastException:

You can test whether something is a map entry using the map-entry? predicate:

(map-entry? (find {:foo :bar} :foo))
;;=> true

(map-entry? [:foo :bar])
;;=> false

You can use assoc to get a map that has all the same key-value pairs as an existing map, with one mapping added or changed:

(assoc {} :foo :bar)
;;=> {:foo :bar}

(assoc (assoc {} :foo :bar) :baz :qux)
;;=> {:foo :bar, :baz :qux}

(assoc {:baz :qux} :foo :bar)
;;=> {:baz :qux, :foo :bar}

(assoc {:foo :bar :baz :qux} :foo 42)
;;=> {:foo 42, :baz :qux}

(assoc {:foo :bar :baz :qux} :baz 42)
;;=> {:foo :bar, :baz 42}

You can use dissoc to get a map that has all the same key-value pairs as an existing map, with possibly one mapping removed:

(dissoc {:foo :bar :baz :qux} 42)
;;=> {:foo :bar :baz :qux}

(dissoc {:foo :bar :baz :qux} :foo)
;;=> {:baz :qux}

(dissoc {:foo :bar :baz :qux} :bar)
;;=> {:foo :bar :baz :qux}

(dissoc {:foo :bar :baz :qux} :baz)
;;=> {:foo :bar}

(dissoc {:foo :bar :baz :qux} :qux)
;;=> {:foo :bar :baz :qux}

(dissoc {:foo nil} :foo)
;;=> {}

count returns the number of mappings, in constant time:

(count {})
;;=> 0

(count (assoc {} :foo :bar))
;;=> 1

(count {:foo :bar :baz :qux})
;;=> 2

You can get a sequence of all entries in a map using seq:

(seq {})
;;=> nil

(seq {:foo :bar})
;;=> ([:foo :bar])

(seq {:foo :bar :baz :qux})
;;=> ([:foo :bar] [:baz :qux])

Again, maps are unordered, so the ordering of the items in a sequence that you get by calling seq on a map is undefined.

You can get a sequence of just the keys or just the values in a map using keys or vals, respectively:

(keys {})
;;=> nil

(keys {:foo :bar})
;;=> (:foo)

(keys {:foo :bar :baz :qux})
;;=> (:foo :baz)

(vals {})
;;=> nil

(vals {:foo :bar})
;;=> (:bar)

(vals {:foo :bar :baz :qux})
;;=> (:bar :qux)

Clojure 1.9 adds a literal syntax for more concisely representing a map where the keys share the same namespace. Note that the map in either case is identical (the map does not “know” the default namespace), this is merely a syntactic convenience.

;; typical map syntax
(def p {:person/first"Darth" :person/last "Vader" :person/email "darth@death.star"})

;; namespace map literal syntax
(def p #:person{:first "Darth" :last "Vader" :email "darth@death.star"})

This modified text is an extract of the original Stack Overflow Documentation created by the contributors and released under CC BY-SA 3.0 This website is not affiliated with Stack Overflow