Data Types
Remarks#
dtypes are not native to pandas. They are a result of pandas close architectural coupling to numpy.
the dtype of a column does not in any way have to correlate to the python type of the object contained in the column.
Here we have a pd.Series
with floats. The dtype will be float
.
Then we use astype
to “cast” it to object.
pd.Series([1.,2.,3.,4.,5.]).astype(object)
0 1
1 2
2 3
3 4
4 5
dtype: object
The dtype is now object, but the objects in the list are still float. Logical if you know that in python, everything is an object, and can be upcasted to object.
type(pd.Series([1.,2.,3.,4.,5.]).astype(object)[0])
float
Here we try “casting” the floats to strings.
pd.Series([1.,2.,3.,4.,5.]).astype(str)
0 1.0
1 2.0
2 3.0
3 4.0
4 5.0
dtype: object
The dtype is now object, but the type of the entries in the list are string.
This is because numpy
does not deal with strings, and thus acts as if they are just objects and of no concern.
type(pd.Series([1.,2.,3.,4.,5.]).astype(str)[0])
str
Do not trust dtypes, they are an artifact of an architectural flaw in pandas. Specify them as you must, but do not rely on what dtype is set on a column.
Checking the types of columns
Types of columns can be checked by .dtypes
atrribute of DataFrames.
In [1]: df = pd.DataFrame({'A': [1, 2, 3], 'B': [1.0, 2.0, 3.0], 'C': [True, False, True]})
In [2]: df
Out[2]:
A B C
0 1 1.0 True
1 2 2.0 False
2 3 3.0 True
In [3]: df.dtypes
Out[3]:
A int64
B float64
C bool
dtype: object
For a single series, you can use .dtype
attribute.
In [4]: df['A'].dtype
Out[4]: dtype('int64')
Changing dtypes
astype()
method changes the dtype of a Series and returns a new Series.
In [1]: df = pd.DataFrame({'A': [1, 2, 3], 'B': [1.0, 2.0, 3.0],
'C': ['1.1.2010', '2.1.2011', '3.1.2011'],
'D': ['1 days', '2 days', '3 days'],
'E': ['1', '2', '3']})
In [2]: df
Out[2]:
A B C D E
0 1 1.0 1.1.2010 1 days 1
1 2 2.0 2.1.2011 2 days 2
2 3 3.0 3.1.2011 3 days 3
In [3]: df.dtypes
Out[3]:
A int64
B float64
C object
D object
E object
dtype: object
Change the type of column A to float, and type of column B to integer:
In [4]: df['A'].astype('float')
Out[4]:
0 1.0
1 2.0
2 3.0
Name: A, dtype: float64
In [5]: df['B'].astype('int')
Out[5]:
0 1
1 2
2 3
Name: B, dtype: int32
astype()
method is for specific type conversion (i.e. you can specify .astype(float64')
, .astype(float32)
, or .astype(float16)
). For general conversion, you can use pd.to_numeric
, pd.to_datetime
and pd.to_timedelta
.
Changing the type to numeric
pd.to_numeric
changes the values to a numeric type.
In [6]: pd.to_numeric(df['E'])
Out[6]:
0 1
1 2
2 3
Name: E, dtype: int64
By default, pd.to_numeric
raises an error if an input cannot be converted to a number. You can change that behavior by using the errors
parameter.
# Ignore the error, return the original input if it cannot be converted
In [7]: pd.to_numeric(pd.Series(['1', '2', 'a']), errors='ignore')
Out[7]:
0 1
1 2
2 a
dtype: object
# Return NaN when the input cannot be converted to a number
In [8]: pd.to_numeric(pd.Series(['1', '2', 'a']), errors='coerce')
Out[8]:
0 1.0
1 2.0
2 NaN
dtype: float64
If need check all rows with input cannot be converted to numeric use boolean indexing
with isnull
:
In [9]: df = pd.DataFrame({'A': [1, 'x', 'z'],
'B': [1.0, 2.0, 3.0],
'C': [True, False, True]})
In [10]: pd.to_numeric(df.A, errors='coerce').isnull()
Out[10]:
0 False
1 True
2 True
Name: A, dtype: bool
In [11]: df[pd.to_numeric(df.A, errors='coerce').isnull()]
Out[11]:
A B C
1 x 2.0 False
2 z 3.0 True
Changing the type to datetime
In [12]: pd.to_datetime(df['C'])
Out[12]:
0 2010-01-01
1 2011-02-01
2 2011-03-01
Name: C, dtype: datetime64[ns]
Note that 2.1.2011 is converted to February 1, 2011. If you want January 2, 2011 instead, you need to use the dayfirst
parameter.
In [13]: pd.to_datetime('2.1.2011', dayfirst=True)
Out[13]: Timestamp('2011-01-02 00:00:00')
Changing the type to timedelta
In [14]: pd.to_timedelta(df['D'])
Out[14]:
0 1 days
1 2 days
2 3 days
Name: D, dtype: timedelta64[ns]
Selecting columns based on dtype
select_dtypes
method can be used to select columns based on dtype.
In [1]: df = pd.DataFrame({'A': [1, 2, 3], 'B': [1.0, 2.0, 3.0], 'C': ['a', 'b', 'c'],
'D': [True, False, True]})
In [2]: df
Out[2]:
A B C D
0 1 1.0 a True
1 2 2.0 b False
2 3 3.0 c True
With include
and exclude
parameters you can specify which types you want:
# Select numbers
In [3]: df.select_dtypes(include=['number']) # You need to use a list
Out[3]:
A B
0 1 1.0
1 2 2.0
2 3 3.0
# Select numbers and booleans
In [4]: df.select_dtypes(include=['number', 'bool'])
Out[4]:
A B D
0 1 1.0 True
1 2 2.0 False
2 3 3.0 True
# Select numbers and booleans but exclude int64
In [5]: df.select_dtypes(include=['number', 'bool'], exclude=['int64'])
Out[5]:
B D
0 1.0 True
1 2.0 False
2 3.0 True
Summarizing dtypes
get_dtype_counts
method can be used to see a breakdown of dtypes.
In [1]: df = pd.DataFrame({'A': [1, 2, 3], 'B': [1.0, 2.0, 3.0], 'C': ['a', 'b', 'c'],
'D': [True, False, True]})
In [2]: df.get_dtype_counts()
Out[2]:
bool 1
float64 1
int64 1
object 1
dtype: int64